4.1 EXAM QUESTIONS MS

1.	(a)	Incre	eased surface area (1)				
		more	e collisions (1)		2		
	(b)	(i)	Experiment $2 = 9.6 \times 10^{-4}$ (1)	.)			
			Experiment $3 = 0.010$ (1)				
			Experiment $4 = 8.1 \times 10^{-4}$ (1	.)			
			Experiment $5 = 0.035$ (1)				
		(ii)	$k = \frac{1.2 \times 10^{-4}}{(0.020)(0.020)^2} (1) = 1$	5 (1) $\text{mol}^{-2} \text{dm}^6 \text{s}^{-1}$ (1)	7		
					[9]		
2.	(0)	ordo	e viet A = 1.		1		
	(a)	order wrt NoOH = 1:			1		
		order wrt NaOH = 1; Leivist mate in Fern 4 = 2.4 \text{ or } 10^{-3}.			1		
		Initial rate in Exp $4 = 2.4 \times 10^{-3}$;					
	(b)	(i)	r(ate) = k[A]				
			OR				
			r(ate) = $k[A][NaOH]^0$; (penalise missing [] b (penalise missing [] of (if wrong order, allow their rate eqs) (penalise k_a or k_w etc)		1		
		(ii)	$k = \frac{9.0 \times 10^{-3}}{0.02}$;		1		
			= 0.45;		1		
			s^{-1} ;		1		
		(iii)	(large) excess of OH ⁻ or [OH] is large/high:	1		
			[OH ⁻] is (effectively) constar <i>OR</i>				
			[A] is the limiting factor	(Q of L mark)	1		
					[9]		
3.	(a)	Pow	er (or index or shown as x in []	x) of concentration term			
- *	()		ate equation) (1)	,	1		

(b) 2 (1)

- (c) (i) Order with respect to A: 2 (1)

 Order with respect to B: 0 (1)
 - (ii) Rate equation: (rate =) k [A]² (1) Allow conseq on c(i)

Units for rate constant: mol⁻¹ dm³ s⁻¹ (1) conseq on rate equation

[6]

4

4. (a) Order with respect to A 1 (1)
Order with respect to B 1 (1)
Order with respect to C 2 (1)

3

(b) Value of k
$$K = \frac{8.0 \times 10^{-5}}{(0.1)(0.2)(0.2)^2} = 0.1$$

$$Units of k \qquad mol^{-3} dm^9 s^{-1} (1)$$

$$Initial \ rate \qquad 1.0 \times 10^{-5} \ (mol \ dm^{-3} \ s^{-1})$$

$$(1)$$

4

(c) increases (1) [8]

5. (a)

/		
Substances added to an excess of zinc and 100 cm ³ of 0.2 M hydrochloric acid	Volume of hydrogen/cm ³	Effect on initial rate of reaction
100cm ³ water	240 (1)	decreased (1)
10g zinc	240 (1)	no change (1)
50 cm ³ 0.2 M hydrochloric acid	360 (1)	no change (1)

6

4

(b) Order with respect to A 1 (1)

Order with respect to B 1 (1)

Initial rate $2.8 \times 10^{-5} \text{ (mol dm}^{-3} \text{ s}^{-1}\text{) (1)}$

either via $k = 1.56 \times 10^{-3} (1)$

or via table eg expts $2 \rightarrow 4$: rate $\times \frac{1}{2} \times \frac{3}{4} = \times \frac{3}{8}$ (1)

(c) (i) Calculation
$$k = \frac{7.5 \times 10^{-3}}{(0.25)^2 (0.50)^2} (\mathbf{1}) = 0.48 (\mathbf{1})$$

$$\frac{\text{mol dm}^{-3} \text{s}^{-1}}{(\text{mol dm}^{-3})^2 (\text{mol dm}^{-3})^2} = \text{mol}^{-3} \text{ dm}^9 \text{ s}^{-1}$$

¹ (1)

[14]

6. (a)
$$\exp 2 \quad 4.0 \times 10^{-3}$$
 1 $\exp 3 \quad 0.45 \times 10^{-5}$ 1 $\exp 4 \quad 9.0 \times 10^{-3}$ 1

(b)
$$\frac{1.8 \times 10^{-5}}{(3.0 \times 10^{-3})^2 (1.0 \times 10^{-3})}$$
 1
$$2000$$
 1
$$mol^{-2} dm^6 s^{-1}$$
 1 [6]

(ii)
$$0$$
 (1)

2

(b) (i) Value of k:
$$k = \frac{\text{rate}}{[NO]^2[O_2]} = \frac{6.5 \times 10^{-4}}{(5.012 \times 10^{-2})^2 (2.0 \times 10^{-2})} = 13$$

Units of k: $\text{mol}^{-2} \text{dm}^{6} \text{s}^{-1}$ (1)

(ii) rate =
$$13 (6.5 \times 10^{-2})^2 (3.4 \times 10^{-2})$$

= 1.9×10^{-3} (mol dm⁻³ s⁻¹) (1)
If k wrong, the mark in (ii) may be gained conseq for their $k \times 1.437 \times 10^{-4}$

[6]

4

8. (a) (i) Experiment 2:
$$0.4(0) \times 10^{-3}$$
 (1)
Experiment 3: 0.15 (1)
Experiment 4: 0.28 (1)

(ii)
$$k = \frac{4.8 \times 10^{-3}}{(0.20)^2 \times (0.30)} = 0.4(0) \text{ mol}^{-2} \text{ dm}^6 \text{ s}^{-1}$$

(1)

(1)

6

1

[7]

9. (a) (i) (Experiment
$$1 \rightarrow 2$$
) [A] doubled, ([B] constant,)
rate doubled (1)
stated or shown numerically

stated or snown numerically

(ii)
$$2 (1)$$
 or shown as ... $[B]^2$

2

(b) (i)
$$k = \frac{9.30 \times 10^{-5}}{(0.75)^2 \times (1.50)} = 1.1(0) \times 10^{-4}$$
(1) (1)

units of k: $mol^{-2} dm^6 s^{-1}$ (1)

(ii) rate =
$$(1.10 \times 10^{-4}) \times (0.20)^2 \times (0.10)$$

= $4.4(1) \times 10^{-7}$ (mol dm⁻³ s⁻¹)

(1) for the answer

Ignore units

Conseq on (i)

Upside down expression for k scores zero in (i) for 9073 but rate = $9073 \times (0.2)^2 \times (0.1) = 36(.3)$ conseq scores (1) in (ii)

4

10. (a) (i)

Expt	Initial [A]/mol dm ⁻³	Initial [B]/mol dm ⁻³	Initial rate/mol dm ⁻³ s ⁻¹
1	0.30	0.30	1.5×10^{-2}
2	0.60 (1) (0.58 to 0.63)	0.60	6.0×10^{-2}
3	0.45	1.20 (1) (1.17 to 1.25)	9.0×10^{-2}
4	0.90	0.60	$9.0 \times 10^{-2} (1)$ (8.6 to 9.2×10^{-2})

(ii)
$$K = \frac{\text{rate}}{[A][B]} = \frac{1.5 \times 10^{-2}}{0.3 \times 0.3}$$
 (1) = 0.166 (1) (or 0.17 or 0.16)
(1) (1)

units: mol⁻¹ dm³ s⁻¹ (1)

6

- (b) surface area more (than doubled) (1) many more collisions (1) 2 [8]
- 11. (a) 2 (1) 0 (1) $\text{rate} = k[J]^2 (1)$

(b)
$$k = \frac{4 \times 10^{-4}}{(2 \times 10^{-2})^2 (5 \times 10^{-2})}$$
 (1) = 20 (1) $mol^{-2} dm^6 s^{-1}$

(c) rate = k []ⁿ
$$\therefore$$
 []ⁿ = $\frac{\text{rate}}{k}$
units: $\frac{\text{mol dm}^{-3} \text{ s}^{-1}}{\text{s}^{-1}}$ = mol dm⁻³ \therefore n = 1 (2)
greater/increase (1)